报告题目:The weak Galerkinfinite element method for eigenvalue problems
报告人:张然教授 (吉林大学)
报告时间:2020年9月3日(星期四)下午15:00—16:00
报告形式:腾讯会议 ID 205 774 511
报告摘要:This talk is devoted to studying eigenvalue problem by the weak Galerkin (WG) finite element method with an emphasis on obtaining lower bounds. The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions. As such it is more robust and flexible in solving eigenvalue problems since it finds eigenvalue as a min-max of Rayleigh quotient in a larger finite element space. We demonstrate that the WG methods can achieve arbitrary high order convergence. This is in contrast with classical nonconforming finite element methods which can only provide the lower bound approximation by linear elements with only the second order convergence. Numerical results are presented to demonstrate the efficiency and accuracy of the WG method.
报告人简介:张然,理学博士,教授,博士生导师。主要从事非标准有限元方法、随机微分方程数值解、多尺度分析及应用、金融衍生产品的数值计算等课题研究。在包括计算数学领域的重要期刊《SIAM J Numerical Analysis》、《SIAM J ScientificComputing》、《Mathematics of Computation》、《IMA JNumerical Analysis》等上发表学术论文50余篇。
(供稿人:雷锦誌;审稿人:裴永珍)
数学科学学院
2020年8月24日